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ABSTRACT

Any discontinuity in flow at a plane boundary is dispersed by the diffusion of vorticity
into a boundary laver and wake. Experimental measurements in the past have been
correlated with empirical formulations. A generalization gives both the horizontal
component and the vertical component of the mean velocity. In the laminar sublaver
the velocity is a solution of the diffusion equation. In the turbulent boundary layer
the velocity can be expressed by a Fourier integral. In the free stream there is a
vertical persistence of velocity. The computation of velocity is provided by subroutines.
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INTRODUCTION

The drag on a ship is partly a viscous resistance and partly a wave resistance. The
viscosity of the fluid causes a transport of momentum from the ship to the fluid. The
momentum is located in a boundary layer at the surface of the ship, and in the wake
behind the ship. The boundary layer is laminar at the bow, but the boundary layer is
turbulent at the stern. For a nonslip boundary condition the velocity relative to the
ship is zero at the surface and is the velocity for free flow far from the surface. A
knowledge of the velocity may be found from an analysis of the analogous problem
in the flow over a plane.

When a thin plate moves edgewise through a viscous fluid the plate entrains fluid
if there is a nonslip boundary condition at the surface of the plate. Each differential
element of surface of the plate sets up a current which trails downstream and spreads
out by diffusion. The velocity at the plate is the accumulated sum of velocities in
currents which have been created upstream.

The boundary layer of a plate has been the subject of many investigations' - '. There
are three principal methods of analysis. The first method is statistical. It leads to a
svstem in which the number of variables is greater than the number of equations.
Various schemes for closure have been proposed. The second method is polynomial.
The velocity is expressed as a power polynomial in a limited region of a laminar
boundary layer. The third method is spectral The velocity is expressed as a Fourier
integral. The rate of change of the Fourier amplitude is determined by an
integro-differential equation. The evolution of a velocity distribution from an initial
distribution is determined uniquely by the integro-differential equation.

The Fourier analysis has been applied to homogeneous isotropic turbulence. Contact
of the fluid with a solid boundary is the origin of real turbulence.

A comprehensive source of information about boundary layers is Boundary-Layer
Theory by Schlichting 7 . The Fourier analysis of flow in a fluid has been investigated
by Batchelor3 and by Orszag 9 .

EQUATION OF CONTINUITY

A fluid consists of particles with random velocities. The number of particles per
unit volume determines a median density p. Across any mathematical boundary there
is a flux of particles from both sides. A boundary which is moving at such a speed
that the flux is zero defines a median velocity v.

In a continuous fluid the law of conservation of mass requires that within any
mathematical boundary the mass density p and the particle velocity v are related by
the equation

fp d-r- pv.ds =0 (1)at f

where t is the time, d-" is a volume element within the boundary, and ds is a surface
element on the boundary. Application of the Gauss theorem leads to the equation

OpOp dp--_+ V.(pv) = - + v. Vp + p.v = - 4p V.v = 0 (2)
Ot at dt

The divergence of velocity is the rate of expansion of the fluid.



EQUATION OF MOTION

The bulk modulus K is the rate of decrease of pressure per unit rate of expansion.
A pressure pulse is propagated through the fluid with the speed of sound (& p)l,'

,' In a continuous fluid the gradient of velocity satisfies the identity

Vv = I(Vv - v'v) + (Vv + V'v) (3)

where V'v is the transpose of Vv. The antisymmetric part is the rate of rotation Q1 and
the symmetric part is the rate of strain 9. There would be spinup of fluid particles
if stress were not symmetric. In an isotropic fluid the pressure is isotropic and shear
stress is proportional to shear rate. The strain rate is partly an isotropic expansion
rate, which is the trace of the strain rate, and is partly an anisotropic distortion rate,
which is the shear rate. The shear stress arises from the anisotropic distortion rate.
The stress E is given by the equation

E = - pl V.v I - 2M (4)

where p is the pressure, and p is the viscosity.
The force on any mathematical boundary is given by the Gauss theorem

V.! dT =j'.ds (5)

where dr is a volume element within the boundary and ds is a surface element at the
boundary. The equation of motion per unit volume is given by the equation

dvAP - . V.2 (6)

As a consequence of the identity

V.V'v = VV-v (7)

the equation of motion is the Navier-Stokes equation

dv 4 v-VvV dp t , VV-v - VVv (8)a t f (s)P

The kinematic viscosity v is given by the equation

[1= (9)
~P

For hydrodynamics the kinematic viscosity is constant. Differentiation throughout the
equation of motion leads to the equation

6 f dp _ ia (V.v) - v.V(V.v)-t (Vv.Vv)- -v p V.V(V.v) (10)

where a tensor enclosed in parentheses is the contraction of the tensor by internal
scalar multiplication This equation is a Poisson equation for the determination of
pressure Differentiation throughout the equation of motion leads to the equation

a- (Vv) v.V(Vv) [Vv.Vv] = - V.V(V.v) (11)
at P

where a tensor enclosed in brackets is the contraction of the tensor by internal vector
niltiplication This equation is a diffusion equation for the determination of vorticity.

2
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BLASIUS PROFILE

For two-dimensional flow it is fashionable to define Cartesian coordinates x, y, z
such that x is parallel to the plane in the direction of flow, y is perpendicular to the
plane, and z is parallel to the plane in the direction perpendicular to the flow Let
i, j. k be unit vectors in the directions of increasing x, y. z. The particle velocity v is
given by the equation

v =Ui - j (12)

where the components u. v are zero at the plane but approach U. 0 with increasing y.
Continuity in an incompressible fluid is expressed by the equation

du at, 0 (13)
dx dy

The continuity equation is sartished when the coMponenIts of velocity are derived from
a stream function in iccordance with the equations

a- - (14)

This follows from the principle that a second order derivative is independent of the
order of differentiation.

For stationary flow the derivative with respect to t is zero Far downstream derivatives
with respect to r approach zero. and the NVvk. .. tokes equation is reduced to the
equation

du du a32u
u 1- I I - - (15)

dx (3Ydy

Far downstream the profile of the boundary layer approaches a constant limit.
The limiting profile is given by a relation between two dimensionless variables

and ¢, which are defined by the equations

LT 7= V vx (16)

Differentiation leads to the equations

* ,= .u*- - (17)

Then substitution in the reduced equation of motion leads to the Blasius equation

¢¢" + 2 '" = 0 (18)

Boundary conditions for this differential equation are given by the equations

¢= '=0 at 0 (19)

at - (20)

In the original derivation by Blasius' the variables were so defined that (' approached
a limit of 2. The derivation herein follows the derivation by Schlichting 7 where the
variables are so defined that C' approaches a limit of unity.
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An ascending series is given by the equation

¢= 4 a 3" 2  
(21)

This series satisfies the boundary conditions at 4 = 0. Substitution in the differential
equation leads to the recurrence equation

(3m - 3k - 2)(3m - 3k - 1)aka, -_k + 2(3m)(3m + l)(3m + 2)a, 0 (22)
k=0

The recurrence is started with a value of a 0 which is adjusted by trial to make the
series meet the boundary conditions at -. -. The computed value of a 0 is 0.16603.
The ratio between successive coefficients of the series tends to a constant limit with
increasing order. It is possible to estimate a remainder after a finite number of terms
on the basis of the geometric series. In no case can the series be used for t greater
than 5.69. where the ratio between terms becomes unity.

For large values of 4 the value of ¢ is the sum of a linear term and a correction.
Correct to first order the correction is a solution of the equation

(Q + c)¢" - at'". = 0 (23)

where c is an arbitrary constant. The computed value of c is -1.72077. The solution
of the differential equation is given by the equations

4 + c - A(Q + c) e-i )2 d - 2.4 e24)

= 1-A e4-(e ) dt (25)

where A is an arbitrary constant. The arbitrary constant is selected so as to make
the corrected linear terms coincide with the series expansion at 4 = 5.0. The integral
in the correction is given by the equation

J -( d4 = V [1 - erf('(Q + c))] (26)

where erf is the error function.
Previous analyses and computations on the Blasius profile are summarized by the

data in a table in a paper by Howarth2 , which is the basis for the Table 7 1 in the
text by Schlichting 7 . That table of data is reproduced by the following subroutine

QBROUTil'E BLSSPF (AL', AN, AX. AY, FU. FV)

FORTRAN SUBROUTINE FOR BLASIUS PROFILE

The free-stream velocity U is given in argument AU, and the kinematic viscosity v
is given in argument AT% The coordinates x, y are given in the arguments AI, A) Series
expansions arid error integrations are used in the evaluation of the Blasius profile.
The components u, v are stored in functions FU, FV.

4



TURBULENT PROFILE

Far downstream the flow in the boundary laver is turbulent There have been many
experiments on the turbulent boundary layer. In the absence of a fundamental theory
the experiments have been correlated with empirical formulations. A celebrated
formulation is the logarithmic law, which expresses mean velocity as the logarithm
of the distance from a wall The logarithm cannot be used at the wall where velocity
is zero and the logarithm is -o, or at infinite distance from the wall where velocity
is finite and the logarithm is -- oo Corrections have been published by Reichardt 4 and
by Thompson'. The argument of the logarithm is incremented by unity and the logarithm
is blended with the free-stream velocity.

The Reynolds number R, is defined by the equation

Ux
Rx = -- (27)

11

where U is the free-stream velocity, v is the kinematic viscosity and x is the distance
downstream. The drag D on the wall is given by the equation

D 2 (O2  (28)D U (log R=) a5 8

where the constant c is defined by the equation

c = 0.455 (log 10)2-58 (29)

This formulation is equivalent to Equation 21.16 in the text by Schlichting 7. A shear
velocity u. is defined by the equation

j'T

U, = (30)

where -r is the shear stress at the wall, and p is the density. The shear stress r is
given by the equation

dD (31)
dx

The boundary layer thickness 6 is determined by the equation

U.6 =___ (32)
V (log R.) 2"58

This equation is equivalent to Table 21.1 in the text by Schlichting7. Finally the mean
velocity u is given by the equation

U. log I + -K .- (1 -y)U (33)
K V /

where A is a constant and y is the blending function. The experimental value of K is
given by the equation

K= 0 40 (34)

Various empirical schemes for the blending function have been tried, but a more
logical basis for the blending function would be the error function To within

5
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experimental error the blending function can be expressed by the equations

r/ Y = erf(?l - - erf(Ti - 7)
6 = 2 erf() 35)

Then the blending function is in the range 1 > y > 0 while y is in the range 0 < Y<
Differentiation with respect to x leads to the equation

P-,2 c [ 2 .5 8 ]
"- 2p (log R,) 2 58 1 - log R, (36)

and further differentiation leads to the equation

dT = -a 2.58c __ [ ._ (37)

dx - x(logR.) iogE P

Then the derivative of u. is given by the equation

du. I I d(
dx 7 du x(8

Differentiation with respect to x leads to the equation

1

d6 U [ lo -P 5 - log R, ].g

dx u.(logR=)3  [logR z  (2.58) 258 (39)

log R,

Then the derivative of y is given by the equation

dy /- y e - e I d6
_I./ = Tr - (40)

dx 6 erf(') 6 dx

Finally the derivative of u with respect to x is given by the equation

au _ dy du.. v du. Ld7 dy

Although the derivatives are given by empirical functions with finite numbers of terms
their integration with respect to y would lead to an unlimited number of terms In a
practical integration with respect to y the integrand is best approximated by a power
polynomial in y and integrated term by term A discrete set of iriteLrarids is converted
into a discrete set of coefficients by I I -point Lagrange interpolation arid the integration
is completed coefficient by coefficient.

The stream function g is given by the equation

P = 0u dy (42)

6



and the vertical component v is given by the equation

1, - ady (43)

The integrations are performed with the aid of the following subroutine.

S'BRO!JTI\N. TBLNP F  .A', AN, AX, AY, FLi, FV)

FORTRAN SUBROUTINE FOR TURBULENT PROFILE.

The free-stream velocity ti is given in argument AU. and the kinematic viscosity v

is given in argument AN. The coordinates x. y are given in the arguments Ax. AY.

Empirical formulations and Lagrange interpolation are used in the evaluation of the

turbulent profile The components u, r are stored in the functions ,-V.

LINE FLUX PROFILE

The usual assumption is made that pressure is constant over a flat plate in a steady

flow parallel to the plate. Let the free-stream velocity -l'i be disturbed by a small

counter velocity v. The Fourier transform can be applied to a function which is zero

evervwhere except at the origin. Then Fourier integration leads to the equation

v= 2- -i- -j +
- ty di (44)

That this expression for velocity has zero divergence can be verified directly by
differentiation. Furthermore it can be derived from the stream function ' in the
equation

-dp (45)

At x = 0 an application of the Euler theorem and an integration of the sine quotient
function shows that = - I for all y > 0 and .

= + ' for all y< 0. Thus the flux in the
counter flow is unity at x = 0. The curl of the velocity is given by the equation

VXV = +- (A2 - K dc = yk (46)

To within small quantities of second order the vorticity satisfies the differential equation

U Y (a2
7  aZY (47)ox 5 Ox 5Oy_ ]

Substitution of the Fourier integral into the differential equation leads to the equation

1,;X :_ 1, (X2 _ \-) (48)

which may be solved by the quadratic rule to give the equation

, -- (49)

The parameter A is an even furiction of the parameter K The radical is negative
upstream and is pozitive downstream Otherwise the integrals do not converge.

7



When y is increased to ifinitv the integration with respect to A7 makes a sicnificant

contribution to the iitegration only where A--0.
Upstream the parameter X is given by the limit

A- -- 0) (50)

Thus the stream function is given by the limit
V.T!

and the velocity v is given by the limit

U / -"  1, Z

The vertical component of velocity persists with increasing y, but diminishes rapidly
with distance x upstream.

Downstream the parameter X is given by the limit

X 0 (K 0-o) (53)

Thus the stream function is given by the limit

oI(y - (54)

and the flux in the counter current is everywhere unity. It is independent of distance
x downstream.

In the integrals for the components of velocity the integrands are the products of

the monotonic factors

- 1 .. . C, (55)27T 27rTtK

and the oscillatory factor

C (56)

The integration through any number of cycles of the oscillatory factor can be completed
if the monotonic factors are expressed as power series in K. The range of the power
series is limited by the presence of the radical

U (57)

in the parameter A. For small values of K the radical is expressed by the equation

I 2  (lll ,(2m), 12VK\Z t
-- ) - K2 

= - _ _

\(L2i' mG% m -- I)2 2"(Ynl)2 UW(8

This series converges only when A: meets the limitation

- < - U.. (59)
2v. 21,

The series is an everi function of A For large vilues of A the radical is expressed by



the equation

.= (2rn - l)H12m(1 ()

This series conver., > only when A meets the limitation

2v' 1 2v'(1< < -- (61)
U K U

The series is an odd function of 1/K. Efficient evaluation of the series is only possible
if the ranges of their arguments are much less than the limits of their convergence.
The monotonic factors are expanded in each of a sequence of intervals of limited
ring'e

The Value of & in the first interval is given by the equation

A7 = 7 - 0 (62)

where 17 is the center of expansion and 9 is the variable of expansion. The variable 6
is _Liven by the equation

6 = cu ( 1 _ u 4 - 1) (63)

where E is half the range of expansion and u is a variable of interpolation. The first
interval straddles the origin where 7) = 0. then in subsequent intervals ?I is incremented
by 2c. Thus the monotonic factors are approximated by the series

-JX
C = au' = -i aiu" (64)

S=O K m=O

Required for the computation of velocity are the integrals
,1 +1

cE' 7 amum c " du c e '
77
Y  amum elyu du (65)

Required for the integration is the recurrence equation

f uI M tcyu d U %CUE - mrn ' um-1 etcyu du (66)

The recurrence is started with the initial integral in the equation

Or du L i(67)

The recurrence is cycled in ascending order if cy satisfies the inequality

17 (68)

Otherwise the recurrence is cycled in descending order with an initial approximation
for rn 64

The value of )c in the last interval is given by the equation

6
K = - - (-1 U 41) (69)

U

where 6 is the limit of intecration. The last interval straddles the point where 0 = .
(ontuirlutv throuh the point is achieved by giving to the radical in A the same sign

9



as the sign of A The monotonic factors are approximated by the series

C.- cM - A C_ ,u, - -)v' nu (70)

Then the components of velocity are expressed in terms of the integrals

ml V' cn " - u  dc (71)

M=O fa, K)

Required for the integration is the recurrence equation

C 1  -3.-1[e - -  F C Y (x-72y) r)
Km O in I)kmiJ (1-)~Kr-Ic(l)d (72)'I'C

The recurrence is started with the initial integrals in the equations

- -lY 16 (73)

The recurrenc -d = ~-K de = - Ei(-6(x - iy)) (74)

The recurrence is cycled in descending order if 6(z -- zy) satisfies the inequality

16(x - iy)- 17 (75)

Otherwise the recurrence is cycled in ascending order with an initial approximation
for m = 64.

For" the series expansions the arguments have Chebyshev spacing and interpolations
are made with 11 -point central Lagrange interpolation. Preliminary computations have
established a matrix of coefficients such that the coefficients for progressively increasing
powers of the argument are obtained with the product of an array of values of the
function and the matrix of coefficients.

If x satisfies the inequality

7U > ()+ 1 (76)

then c and 6 are given by the equations

6 ( " 18)2 U187- 6- + (77)
'7

and the last interval can be jettisoned without significant error. Otherwise C and 6
are given by the equations

U 6 = 7U (78)
BV 8V

in which case the Reynolds number is less than 36.
The components of velocity for the line flux are computed by the following subroutine.

10



>B, KT NE LNF\P; AL. , A . A. FL,, F"O

~~FORTRAN SU'BROU.TINE FOR LINE FLUX PROFILE

;'*s** *RANSIB****.....'NE"**O** ******* *N**.** * **** S*

The free-stream velocity U is given in argument AU,. and the kinematic viscosity L, is
given in argument AN. The coordinates x, y are given in the arguments A\. A'. Ascending
and descending recurrence relations are used in the evaluation of Fourier integrals

for a line flux profile. The components u, v of velocity are stored in functions .

NONSLIP BOUNDARY

Exploratory computations with LNFXPr have indicated the nature of the flow from

a line flux.
If x and y are decreased to zero. the contribution to integration extends to large

values of A where A approaches the approximation

U
--K - -) (79)

At the limit of small x and y the velocity is given by the equation

V I ;x~i - yj (x- .O, y - O) (80)V - 7 T i X 2 - Y

which is an efflux upstream and an influx downstream

When x is increased to infinity downstream, the integration with respect to K makes
a significant contribution to the integration only where K 0 and A approaches the
approximation

- 1C (A - 0) (81)

U

Then the velocity is given by the equation

v - i+ e (-.o) (82)

This is a Gaussian distribution of velocity.
In a continuous distribution of line fluxes the efflux and the influx at the leading

edge would tend to cancel. It is assumed that for integrated distributions the Gaussian
profile is adequate.

The formula for velocity does not meet a nonslip boundary condition because the
velocity at y = 0 varies inversely as the square root of distance downstream. However,
a continuous distribution of line fluxes may be integrated to give a constant velocity.
As a consequence of the equation

d 2 tari- = (83)

the integrated velocity is given by the equation

1 4 v1U da
'v(X - a) - - (y 0) (84)

11
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as required by the nonslip boundary condition. Thus the strength of line flux per unit
displacement is given downstream by the expression

\4 
(85)

7T ek

The Gaussian distribution is equivalent to the dispersion of a line pulse of vorticity
which has diffused outward for a time equal to the expression

x - a (86)

U

and has been swept downstream with the speed U.

FOURIER TRANSFORM

Let f(x) be a periodic function cf x. Then it can be approximoted by the Fourier
series

;a(, ancosnx - b1 sin nx (87)

Inasmuch as cosines are even and sines are odd, they satisfy the equation

ET cos kx sin mx dx = 0 (88)

Application of the Euler theorem to the following integrals

I (7 e 
i (

k
-  

m
) d I C I 7ilz-m)i 1

iJ 'm"'1 dx± : e2t(k-mzx ~ - m)] [k- j 0 (k m) (89)

shows that the trigonometric functions satisfy the orthogonality relations

cos kx cos 7ynx dx = sin kx sin mx dx 0 (90)

Application of the addition theorem leads to the equations

f dx = 27T (91)Sr
cos2 kx dx = sin 2 mx dx = n (92)

The mean square error for the Fourier series is given by the equation

2  = I

or ao a 0 cosnx. bsminx-f(x)l dx (93)

Differentiation with respect to the coefficients shows that for least squares error the
coefficients are given by the equations

an = - f(x) cos nx dx b, = f(x) sin nx dx (94)

, Because of the symmetry of the trigonometric functions, the trigonometric series is

12



given by the equation
I =..- -"" 1 ,, o "" '' (r "
1x) = .," ) f(s) cos n(x - s) ds = - - f(s) ds (95)

f r- cos... x _ =--_ n

The substitutions

2rnx 2trs
X -- s (96)

L L

expand the range of approximation from 2T to L. The functions f(x) and f(s) are
replaced by the functions F(x) and F(t) as expressed by the equation

F()- F(s) ' ds (97 )

The substitution

S2rn98)

L

replaces summation with respect to n by integration with respect to -in the limit as
L -c The approximation of summation by integration requires the functions to have
properties of i::tegrability. The Fourier series is approximated by the Fourier transform

A (A:) F(x) e-' dx (99)
2 r

F(x) J A (K) e " d; (100)

In a multidimensional space there is a Fourier transform for each coordinate. Each
transform in a series of transforms can be applied to the amplitude of the previous
transform.

The two-dimensional transform is given by the equations

A(a1)= I F(x. y) e-"'''' dx dy (101)

F(x, y) = IA(. P) e(GOi) do d, (102)

Let (x, y, z) be defined by the equation

P(x, yz)= J A(a. fl) e\ '  do dl (103)

Then ; is a solution of Laplace's equation

V 0" ) ()23(1
.x__ + R- 0 (104)

wherever z - 0 The derivative of j with respect. to z is given by the equation

- J V CXt , fA(a, .) c' - *--ao dOtd (105)dJz If,

where the sign is - for z 0 and the sign is 4 for z ,0 The difference in the derivative
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on opposite sides of the plane z 0 is 47a where a is the source density on the plane

The amplitude

2 - fl .4(n, fi) (106)

is the amplitude for 4rr For a unit source at the origin the amplitude is given by

the equation

21

Two solutions of Laplace's equation are identical to within an additive constant if they
have the same normal derivative on a boundary. Thus the inverse of distance is given

by the equation

1 1 1 - I" -2" 1 .,- -. - *..,, X, da dfl  (108)
r \x - z r, \a -fl

Application of the Fourier transform to the real exponential factor in the integrand
leads to the equation

r f f Jf 1 Y ,.Z .V dt dfl d-y (109)

The evaluation of this Fourier Integral can be completed after a transformation of
coordinates.

Let K, 0, ¢ be polar coordinates with polar axis in the direction of r Then a. l,

are given by the equations

a = K sin0cos K sin0sin$ = cosO (110)

da d y o-K2 SID0d dOdo (111)

and integration with respect to 0, leads to the equation

___ Ia  
A isin0 dA dO do = - dK (112)

r H PJJ' 2 I ) f Kr

This equation confirms the existence of a Fourier transform for the potential of a
pole

Let r, 0. be polar coordinates with polar axis in the direction of K Then x. y. z are

given by the equations

x= rsinOcos y= rsinOsin z- rcosO (113)

dx dy dz - rsinOdr d O do (114)

Another solution of Laplace's equation is given by the equation

() 1)_ = Cos 0

oz r r 15)

Its Fourier amplitude is given by the equation

.4(K) = I Cos e -) .... r 2 sinOdrdO do (116)

Integration with respect to 0, 0 is completed with an integration by parts to give the
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equat ion

= ___ (' ~ sin(Awr)1 drA( - o cos(Kr) .. .. (1 17)
2 7TrK JO k Kr ) r

Integration with respect to r is completed with an integration by parts to give the
equation

A i [sin(-r) F(z
2-T2K [Kr o (118)

This equation confirms the existence of a Fourier transform for the potential gradient
of a pole.

The gradient of inverse distance is given by the equation

- IX) j z j- .j -- , CI ~to Cx - fllZ do dfl d-Y (119)
IX 2 .. . 2 (A - flz 7

The velocity of a point vortex of unit strength is given by the equation

1 k.V,1 yiXj f Ili f fi-aj ox.p,v'zne1,)

This equation confirms the existence of a Fourier transform for the velocity of a point
vortex.

The circulation around a circle at coordinates r. 0 is given by the equation

vd I sin 2 0
- 2 r (121)

A change from spherical polar coordinates to cylindrical polar coordinates and
integration with respect to z with the aid of the equation

X ( z2X2-Y2-z122)

confirms that the circulation is unity around a line vortex of unit strength and of
infinite length.

INCOMPRESSIBLE FLUID

Let r be a position vector in physical space and let w be a position vector in wave
number space The position vectors are defined by the equations

r y zi - yj - zk ic - i - flj - yk (1211)

where i. j, k are orthoconal unit vectors
Let the velocity vector v at the position vector r be expressed by the equation

v(r) = f A(,K) c"d (124)

where )c is a vector in wave number space. 'dw is a volume element in wave number
space. arid A(ho) is the amplitude of the Fourier component with wave number W The
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amplitude is given by the equation

A(w) . . v(r) c- -r dr, (125)87Ta

where !drl is a volume element in physical space The gradient of velocity is given by
the equation

Vv = A(f ) wA c d'4w'  (126)

the divergence of velocity is given by the equation

V-v = if .A(w) E,,.r :dw: (127)

and the curl of velocity is given by the equation

Vxv= w A(w)c .r dw (128)

The Laplacian of velocity is given by the equation

V.Vv = - f w2A(w) c,, r dw. (129)

The amplitude wc-A(N) of the divergence Vv is given directly by the equation

ic.A(c) = I V-v c -ir drl (130)

If the divergence is zero for every r in physical space. the amplitude is zero for every )c
in wave number space. The amplitude satisfies the orthogonality equation

ic-Aic) = 0 (131)

If a nonzero divergence did happen to occur in an incompressible fluid, a pressure
pulse would be created, and the nonzero divergence would be dispersed by a potential
flow

Terms which are quadratic in velocity are expressed by double integrals Let 'K, and 'K2

be variables of integration in the double integration. Incompressibility is expressed
by the equations

'A ) 0 - )A 1 - 2) = 0 ic2 -A(i:z) = 0 (132)

When terms with the same wave number are collected in the integration the amplitudes
are collected in a convolution. The product of velocity and its gradient is given by the
equation

VVv =I f f A() , -MiA(c, - c) c"' dK,.d, (133)

The square of the ,radient is given by the equation

(VV-VV) A- A(r,,)-cI 'A(i I  1 ) X (,'K 1 : (11Kj (134)

This scalar is the diverRence of the vector

i fA ).I"i.A(,C .1 r (135)
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The gradient of pressure is given by the equation

Vp = I A(w) .  . A(K ,_ -- W,) ' r d wI dwJ (136)

Substitution in the equation of notion leads to the integro-difTerential equation

a A(w,) - L'i.cA(w,) - I A(wc).(I - ,__ - 1K) dr 2 I- )I (137)at f 1 .CI *I)P

which expresses the evolution of the spectral representation of the velocity in an
unbounded fluid.

The rote of change of amplitude is expressed as the sum of three terms The first
term replaces x in the Fourier transform with x- Ut. The second term expresses the
influence of amplitude at other points in wave number space. The third term gives
the rate of viscous dissipation.

The rate of change of A(w,) is influenced by the presence of A(W2 ) in the vicinity
of w, In the integrand the postrnultiplication of A(w,) by a tensor eliminates any
component of A(wz) in the direction of ic1 . Other terms outside the integral are the
products of scalars and A(w,). Thus the integro-differential equation preserves the
orthogonality of w, and A( 1 ).

There is no contribution to the integration where w2 is orthogonal to -K, and A(W.)
is parallel to w,. There is no contribution to the integration where 1C. is collinear
with Kc ,,nd Aoc, w,) is orthogonal to K,. If w, is on the perpendicular bisector of W,

then interchange of ic and ic - ic, leaves amplitudes the same but reverses the sign.
There Is Io contribution to the integration by integration along the perpendicular
bisector of K, There is a maximum contribution to the integration when W. is on the
perpcndicular to vc, through the tip of w,. The influence of A(W,) is a pattern which
is crossed by nodal lines.

DIFFUSION

During unbounded evolution the velocity deviates gradually from the boundary
conditions at the surface of a plate. Velocity is injected gradually into the stream to
maintain the boundary conditions. It is only at the surface of the plate that velocity
is injected Everywhere else the evolution of velocity is free. Let the plane with plate
be divided into an equally spaced grid. Over each grid point there is a sine quotient
function Each sine quotient function is unity at its own grid point and is zero on
everv arid line which does not pass through the grid point. An analytic function can
be expressed as a series in sine quotient functions. The coefficients of the terms in
the series are just the values of the function at the crid points The terms for defect
ir velocit 'v are finite only for Lrid points within the area of the plate. The sine quotient
function at any grid point (an be expressed by a Fourier transform. The amplitude
of the Fourier transform is a rectangle of constant density in wave number space.

Let x, y. z be Cartesian coordinates relative to a grid point with x positive downstream,
with y positive across the stream, arid with z positive perpendicular to the stream
let Q(o. P3) be the Fourier arnplitude for the sine quotient function for the grid point
and l)M A be the defect of velocity at. the grid point The velocity is Injected into the
laiiniiar sublaver where the absence of convection reduces the equation of motion to
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the diflusion equation
dv a, z O a 2 v a , •)
-= V - -2 + (138)

The defect in boundary condition is concentrated initially against the plate surface
and then diffuses outward. The velocity for a defect A is given by the equation

v - A --2-- C- du Q(o, a2) et 2  da d# (139)

\, 41t

in which the velocity is proportional to the complementary error function. That this
is 1 solution of the diffusion equation can be verified by direct substitution if z : 0.

The error function is svn*nietric with respect to the plane z -0. The Fourier
,cliiiltude of the error function is the sum of an integration in the range -- < z < 0
cand xii nt'o.rit ion in tie range 0 .z The inte-rls in the two ranges are complex
colltu,",tes li(,r~at lon by parts in each range and cancellation of complex conjugates
leaId to the e(luotloll

2c- dudz- e du (140)

The implitude of the error function is an even real function of -y The velocity is givenbY the equaitin

S J f 2 dua, ) e_40,2.12 da dfl dy (141)

To verify this equation the error function can be replaced by its absolutely convergent
power series, then termn-by-term integration leads to the series for the arcsine of

unityv The equation gives the initial velocitv for the defect A The velocity continues
to evolve thereafter in accordance with the full equation of motion for unbounded flow.

DISCUSSION

An analysis of the complete Navier-Stokes equation for Reynolds numbers less than
1218 has been given by Schwiderski and l.ugt 3 They found overshoot in the velocity
profile and the overshoot increased with Reynolds number There does not seem to
be any confirmation for the overshoot. There is no overshoot in the Blasius profile.
Validation of the Blasius theory for Reynolds numbers more than 100000 is given by

the excellent aereement between measurement and theory in Figure 7.9 in the text
by Schlichtiig. It would be nice to have more experimental data for a smaller Reynolds

riuriber.
The flux of rnomcnturn across any cross section is equal to the drag upstream of

the cross section The flux of mornenturn is eiven by the integral

u W' - u)dy (142)

where ln is tli ilistantarieoLs velocitv in the fluid The instantaneous velocity can be

replhced by mean velocity oly it) the case of laminar flow Otherwise the mean square
of the instantaneious velocity is creater than the square of the mean velocity by the
rCall Square of the fluctuation in velocity.
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Heretofore it has been assumed that the blending function for a turbulent boundary
layer is symmetric with respect to the middle of the boundary layer. and is zero
outside the thickness of the boundary laver. It is more likely that the blending function
diminishes gradually with distance. An empirical formulation is compared with
experimental data in the following figure

0//

0
0 y

6

where the curve represents Equation (35) and the circles are from a tabulation in the
report by Thompson5.

The assumption that the horizontal component of velocity is constant everywhere
in the free stream leads to a vertical component which persists to infinite distance
from the boundary. However, the distribution of vertical velocity initiates a jet and
diffusion of vorticity disperses the jet in the free stream.

At the leading edge of a boundary layer the flow is laminar, but the flow becomes
unstable where the Reynolds number is 520, and the flow becomes fully turbulent
where the Reynolds number is 500000. For a free-stream flow at 20 knots the laminar
flow is unstable at only one twentieth of a millimeter downstream, and the flow is
fully turbulent at five centimeters downstream. Any laminar flow in the boundary layer
of a full-scale ship is insignificant.

CONCLUSION

It is concluded that the most practical representation of the mean velocity is a
generalization of the empirical formulation by Schlichting.
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